Winter Care of the Storage Battery

170—The demands made upon the storage battery in winter are much greater than during the warmer months. This is due to two causes: first, more current is required for starting at low temperatures on account of congealed oil, and second, owing to less daylight, the lights are in use considerably longer than during the summer months.

171—The battery and electrical system should be inspected regularly during cold weather to see that there are no leaks, grounds, loose connections, or, in fact, any conditions which might have a tendency to discharge the battery.

172—When starting in extremely cold weather it is good practice to give the engine several quarter or half turns with the hand crank before using the starter. This relieves the battery of the initial load by breaking the seal formed by the congealed oil around the pistons, bearings, etc.

173—Although a low temperature temporarily reduces the lighting and cranking capacity of a storage battery, it does not damage the battery, providing the electrolyte is not allowed to freeze. The freezing points of electrolyte are shown in the following table:

<table>
<thead>
<tr>
<th>Specific gravity</th>
<th>Temperature below 0° Fahr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1300</td>
<td>94°</td>
</tr>
<tr>
<td>1270</td>
<td>82°</td>
</tr>
<tr>
<td>1250</td>
<td>62°</td>
</tr>
<tr>
<td>1230</td>
<td>40°</td>
</tr>
<tr>
<td>1200</td>
<td>17°</td>
</tr>
<tr>
<td>1150</td>
<td>5°</td>
</tr>
</tbody>
</table>

174—It is evident that there is no danger of a fully charged battery freezing. If, however, the battery is allowed to become discharged, the electrolyte may freeze, and result in considerable damage to the battery.

175—When adding water to the battery in cold weather, the engine should be run at charging speed at least five minutes after the water is added, in order to mix it with the electrolyte. If this is not done, the water will remain on top and freeze at a much higher temperature than the electrolyte.
More Room for the Driver

Seats in the Improved Coupe and Tudor Can be Easily Adjusted to Provide Additional Space

While the standard seating arrangement in the improved Coupe and Tudor is designed to furnish maximum riding comfort for the average size driver, provision has also been made for the accommodation of owners of larger than average size. This has been accomplished by designing the seats so they can be easily adjusted to provide additional space between driver's seat and steering wheel, as well as increased leg room.

Detailed instructions, covering these adjustments, are contained in this issue of the Service Bulletin.

As this information possesses considerable sales value, it should be brought to the attention of all car salesmen, as well as prospective car purchasers.
Adjusting the Coupe Seat

In addition to the increased space obtained by inserting the two dowels in seat riser into the two forward holes in bottom of seat cushion (see Fig. 125), the seat back in the improved Coupe can be moved back to provide additional space between steering wheel and seat back, as well as increased leg room, by proceeding as follows:
142 Lift out seat cushion.
143 Run off the nuts on the ends of the three seat back strainer bolts (see “A,” Fig. 117), and withdraw the bolts.
144 Raise the seat back approximately 2”, this will release the clip which holds seat back to spacer board. Seat back can then be lifted out of car as shown in Fig. 118.
145 Run off the nuts on the ends of the five spacer board to body bolts (see “A,” Fig. 119) and withdraw the bolts.
146 By tipping up the back of the spacer board, it can be lifted out as shown in Fig. 120.
The seat can now be moved back 2" by running off the nuts on the ends of the four seat bar to bracket bolts (see "A," Fig. 121) and withdrawing the bolts. Next slide the seat bar back approximately 2" on brackets or until rear bolt hole in seat bar lines up with rear hole in brackets. The four bolts are then inserted through seat bar and brackets (see "A," Fig. 122) and lock washers and nuts run down tightly on ends of bolts.

This change necessitates two additional bolts, lock washers and nuts being used to hold each end of the body supports to the brackets as shown at "B."

The width of the spacer board is next cut down 2" to correspond to the distance which the seat was moved back. This will preserve the comfortable angle at which the seat back is set and in addition provide greater space between steering wheel and seat back.
To cut down the spacer board proceed as follows:

Place spacer board on a flat surface with the bottom side up and run out the five wood screws (see "A," Fig. 123) which hold spacer block to board. Spacer block "B" can then be removed.

Withdraw tacks from edge of fabric on spacer board where spacer block was withdrawn and fold the fabric back as shown at "A," Fig. 124. Mark off a section 2" in width extending the full length of the spacer board as shown at "B" and saw it off. If an owner is unusually stout and requires a larger amount of clearance between steering wheel and seat back, an additional 2" can be cut from the spacer board.

In instances where the owner does not desire the seat moved back, but simply requires more clearance between steering wheel and seat back, the maximum width of the strip sawed from the spacer board should not exceed 3".

To eliminate any possibility of cutting off too wide or too narrow a strip, it is a good plan to keep several spacer boards on hand from which strips varying in width from 1 to 3" have been cut. By trying out these different width spacer boards in an owner's car, the owner himself can determine which is the most suitable for his needs.

After cutting down the width of the spacer board, drill five new holes in spacer board for the five wood screws which hold block to board. Smooth out the fabric on the board (see "A," Fig. 124) and tack it securely to spacer board. Any excess fabric can be cut off with a pair of scissors or a sharp knife.

Assemble spacer board block to spacer board by running in the five wood screws (see "A," Fig. 123) which hold block to board.

Install spacer board in body, running down the five bolts and nuts (see "A," Fig. 119) which hold spacer board to body.
158 Position seat back in car, hooking the clip on the back of the seat back into the spacer board block. Line up the three bolt holes in seat back strainers with bolt holes in seat bar and run down the three seat back strainer bolts and nuts. (See "A," Fig. 117).

159 Replace seat cushion, making sure to insert the two dowels on seat riser (see "A," Fig. 125) into the two forward holes "B" on bottom of seat cushion board.

Fig. 125

Fig. 126

4 HOLES \(\frac{9}{32} \) DIA. H.R. STEEL
Different Adjustment Methods Used on Coupes Equipped with Former Type Seat Bar Brackets

160 In the first run of the improved Coupes, the seat bar brackets were of a slightly different type than the present design. This necessitates a little different method being used in moving back the seat.

161 A simple method of moving back the seat in Coupes equipped with the former style bracket is to first remove the seat bar by running out the four seat bar to bracket bolts (see "A," Fig. 121). Then bolt a small steel plate to each of the two brackets (see "A," Fig. 127). This plate serves as an extension to the bracket and permits moving back the seat 2" in the same manner as is done with the present design bracket. Details of the plate which can be easily made locally, are shown in Fig. 126.

162 The width of the spacer board is then cut down in the same manner as described in paragraphs 150 to 152.

Moving Back the Seats in the Improved Tudor

163 The driver's seat in the improved Tudor can be set back 1 1/2" by simply moving back the seat and inserting the seat legs into the two forward holes at bottom of seat assembly. This is done as follows:

164 Lift out seat cushion.

165 Run off the two seat leg nuts and washers (see "A," Fig. 128). Seat legs can then be withdrawn from bottom of seat assembly by tipping the seat backwards.

166 Insert seat legs into the two forward holes in bottom of seat assembly shown at "B". If the finishing material extends over the bottom of the holes it can easily be cut out with a knife.

167 Place a flat washer and a lockwasher over the end of each seat leg and run down the two seat leg nuts. (See "A," Fig. 128.)

168 Replace seat cushion.

169 The rear seat can be moved back by sliding back the cushion into the seat back and positioning dowels on seat riser into the two forward holes in cushion frame, in the same manner as shown in Fig. 125.
Winter Care of the Storage Battery

170—The demands made upon the storage battery in winter are much greater than during the warmer months. This is due, to two causes: first, more current is required for starting at low temperatures on account of congealed oil, and second, owing to less daylight, the lights are in use considerably longer than during the summer months.

171—The battery and electrical system should be inspected regularly during cold weather to see that there are no leaks, grounds, loose connections, or, in fact, any conditions which might have a tendency to discharge the battery.

172—When starting in extremely cold weather it is good practice to give the engine several quarter or half turns with the hand crank before using the starter. This relieves the battery of the initial load by breaking the seal formed by the congealed oil around the pistons, bearings, etc.

173—Although a low temperature temporarily reduces the lighting and cranking capacity of a storage battery, it does not damage the battery, providing the electrolyte is not allowed to freeze. The freezing points of electrolyte are shown in the following table:

<table>
<thead>
<tr>
<th>Specific gravity</th>
<th>Temperature below Fahr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1300</td>
<td>94° below 0 Fahr.</td>
</tr>
<tr>
<td>1270</td>
<td>82° below 0 Fahr.</td>
</tr>
<tr>
<td>1250</td>
<td>62° below 0 Fahr.</td>
</tr>
<tr>
<td>1230</td>
<td>40° below 0 Fahr.</td>
</tr>
<tr>
<td>1200</td>
<td>17° below 0 Fahr.</td>
</tr>
<tr>
<td>1150</td>
<td>5° above 0 Fahr.</td>
</tr>
</tbody>
</table>

174—It is evident that there is no danger of a fully charged battery freezing. If, however, the battery is allowed to become discharged, the electrolyte may freeze, and result in considerable damage to the battery.

175—When adding water to the battery in cold weather, the engine should be run at charging speed at least five minutes after the water is added, in order to mix it with the electrolyte. If this is not done, the water will remain on top and freeze at a much higher temperature than the electrolyte.